1 research outputs found

    Engine Fuel Injection Timing : A Design for an Automatic Verification System

    Get PDF
    This thesis describes the development of an automatic testing system for the timing of the fuel injection of a 4-stroke engine. The fuel injection timing is managed by an electronic engine control unit which has a distributed modular design. New software and hardware updates are released every few months for the engine control unit. Furthermore, fuel injection timing must be tested for each new software release, because incorrect timing could potentially lead to engine failure. Thus, automating this frequent testing procedure, which can take 2–5 days manually, is expected to save both time and money. Therefore, the object of this work is to develop a design of an automatic fuel injection timing testing system. There are already abundant scientific studies available related to fuel injection timing and engine control unit. The majority of these studies in the literature review cover various topics about the effects of alternative injection technologies and fuels. A limited number of them comprise the subject of automatic fuel injection timing. Design science was chosen as the research method because of its suitability for product development projects. The most important research question is what the design architecture must be like for testing injection timing. This work started with a comprehensive analysis of the different factors that could affect the design. Underlying motivation for developing an automatic testing system, stakeholders involved, alternative ways for testing implementation, and various other points of view were covered. After defining the system requirements, the setup was built to measure the timing of fuel injection pulses from the engine control unit, which utilized the National Instruments Compact RIO hardware and software programmed with LabVIEW. This program automatically generates an Excel report of the timing test. The design of a testing system architecture that would allow measurements to be made from any of the 112 fuel injection terminals of the control unit was successfully developed. Measurements performed with Compact RIO hardware proved to be accurate and could determine the crankshaft angle with the required accuracy. The accuracy of the testing system was ±5 μs. Next, the development of communication between the testing hardware and the engine control unit’s configuration software was identified as the most important issue for future development of the testing system. The proposed testing system principle is probably feasible for developing any further automatic testing systems for any electric engine control unit in which fuel injection timing needs to be verified. Moreover, Compact RIO hardware and LabVIEW software can be recommended as a tool for developing similar verification systems because they are relatively easy to use, flexible, reliable, and capable of high-speed measurements.Tämä diplomityö kuvaa automaattisen testausjärjestelmän kehittämistä nelitahtimoottorin polttoaineen ruiskutussignaalien ajoitukselle. Ruiskutuksen ajoitusta hallitaan sähköisellä moottorinohjausyksiköllä, millä on hajautettu modulaarinen rakenne. Uusia moottorinohjausyksikön ohjelmisto- ja laitteistoversioita julkaistaan muutaman kuukauden välein. Polttoaineensyötön oikea ajoitus täytyy testata aina, kun uusia versioita julkaistaan, koska väärä ajoitus saattaa aiheuttaa moottorihäiriön. Usein toistuvan testauksen automatisoinnin odotetaan lyhentävän siihen käytettävää aikaa ja kustannuksia merkittävästi, mikä manuaalisesti tehtynä voi kestää 2–5 päivää. Työn tavoitteena on kehittää suunnitelma automaattisesta testausjärjestelmästä polttoaineen ruiskutuksen ajoitukselle. Polttoaineenruiskutukseen ja moottorinohjausyksiköihin liittyviä tieteellisiä julkaisuja on saatavilla runsaasti. Suurin osa kirjallisuuskatsauksessa käsitellyistä tutkimuksista kattaa eri aiheita vaihtoehtoisten ruiskutustekniikoiden ja polttoaineiden vaikutuksista polttomoottoriin. Vain muutama niistä käsittelee polttoaineensyötön automaattista testausta. Tutkimusmenetelmäksi valittiin suunnittelutiede, koska se soveltuu hyvin tuotekehitysprojekteihin. Tärkein tutkimuskysymys on: ”Minkälainen järjestelmän arkkitehtuurin täytyy olla ruiskutuksen ajoituksen testaamista varten?” Kysymyksen tutkiminen aloitettiin analysoimalla perusteellisesti eri tekijöitä, jotka voisivat vaikuttaa toteutukseen. Mikä on se perimmäinen syy miksi automaattinen testausjärjestelmä halutaan kehittää, mukana olevat sidosryhmät, vaihtoehtoiset toteutustavat sekä useita muita näkökulmia huomioitiin. Järjestelmävaatimusten määrittelyn jälkeen rakennettiin koelaite, jolla mitattiin polttoaineensyötön pulssien ajoitusta moottorinohjausyksiköstä, mikä hyödynsi National Instruments Compact RIO laitteistoa ja ohjelmistoa mikä kehitettiin LabVIEW -kehitysympäristössä. Ohjelma luo automaattisesti Excel raportin ajoitustesteistä. Onnistuneesti luotiin testausjärjestelmän arkkitehtuuri, mikä mahdollistaa mittausten tekemisen mistä tahansa hajautetun moottorinohjausyksikön 112 polttoaineensyötön liittimestä. Compact RIO laitteistolla tehdyt mittaukset osoittautuivat tarkoiksi ja se pystyy määrittämään kampiakselin kulman vaaditulla tarkkuudella. Testausjärjestelmän tarkkuus oli ±5 μs. Kommunikaation kehittäminen testauslaitteiston ja moottorinohjausyksikön konfigurointi ohjelmiston välille tunnistettiin kaikkein tärkeimmäksi asiaksi testausjärjestelmän jatkokehitykselle. Ehdotettu arkkitehtuuri on todennäköisesti sopiva ratkaisu automaattisen testausjärjestelmän kehittämiseksi mille tahansa sähköiselle moottorinohjausyksikölle, jonka polttoaineen ruiskutuksen ajoitus halutaan varmentaa. Lisäksi Compact RIO laitteistoa ja LabVIEW ohjelmistoa voidaan suositella työkaluiksi vastaavien testausjärjestelmien kehittämiseen koska ne ovat kohtuullisen helppokäyttöisiä, joustavia, luotettavia ja pystyvät nopeisiin mittauksiin
    corecore